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Abstract
We discuss a general method to construct correlated binomial distributions
by imposing several consistent relations on the joint probability function.
We obtain self-consistency relations for the conditional correlations and
conditional probabilities. The beta-binomial distribution is derived by a
strong symmetric assumption on the conditional correlations. Our derivation
clarifies the ‘correlation’ structure of the beta-binomial distribution. It is also
possible to study the correlation structures of other probability distributions
of exchangeable (homogeneous) correlated Bernoulli random variables. We
study some distribution functions and discuss their behaviours in terms of their
correlation structures.

PACS number: 02.50.Cw

1. Introduction

Incorporation of correlation ρ into Bernoulli random variables Xi (i = 1, 2, . . . , N) taking
the value 1 with probability p and taking the value 0 with probability 1 − p has long history
and have been widely discussed in a variety of areas of science, mathematics and engineering.
Writing the expectation value of a random variable A as 〈A〉, the correlation ρ between Xi

and Xj is defined as

ρ = Corr(Xi,Xj ) = 〈XiXj 〉 − 〈Xi〉〈Xj 〉√〈Xi〉(1 − 〈Xi〉)〈Xj 〉(1 − 〈Xj 〉)
. (1)

If there are no correlations between the random variables, the number n of the variables taking
the value 1 obeys the binomial probability distribution b(N, p). The necessity of the correlation
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ρ comes from the facts that there are many phenomena where dependency structures in the
random events are crucial or are necessary for the explanation of experimental data.

For example, in biometrics, the teratogenic or toxicological effect of certain compounds
was studied [1–3]. The interest resides in the number of affected fetuses or implantation in a
litter. One-parameter models, such as the Poisson distribution and binomial distributions,
provided poor fits to the experimental data. A two-parameter alternative to the above
distributions, beta-binomial distribution (BBD), has been proposed [1, 2]. In the model,
the probability p′ of the binomial distribution b(N, p′) is also a random variable and obeys
the beta distribution Be(α, β).

P(p′) = p′α−1(1 − p′)β−1

B(α, β)
. (2)

The resulting distribution has the probability function

P(n) = NCn · B(α + n,N + β − n)

B(α, β)
. (3)

The mean µ and variance σ 2 of the BBD are

µ = Np and σ 2 = Npq(1 + Nθ)/(1 + θ), (4)

where

p = α

α + β
, q = 1 − p = β

α + β
and θ = 1

α + β
. (5)

θ is a measure of the variation in p′ and is called as ‘correlation level’ [4]. The case of pure
binomial distribution corresponds to θ = 0. However, true ‘correlation’ of the BBD is given
as

ρ = 1

α + β + 1
. (6)

The derivation of the relation is straightforward. If we denote the sum of Xi as S = ∑N
i=1 Xi ,

we can write as 〈XiXj 〉 = 〈S2 −S〉/N(N −1) and 〈Xi〉 = 〈Xj 〉 = 〈S〉/N . From equation (1)
and the results for BBD, we obtain equation (6). We rewrite the variance σ 2 as

σ 2 = Npq + N(N − 1)pq · ρ. (7)

In the area of computer engineering, in the context of the design of survivable storage
system, the modelling of the correlated failures among storage nodes is a hot topic [4]. In
addition to BBD, a correlated binomial model based on conditional failure probabilities has
been proposed. The same kind of correlated binomial distribution based on conditional
probabilities has also been introduced in financial engineering. There, credit portfolio
modelling has been extensively studied [5, 6]. In particular, the modelling default correlation
plays a central role in the pricing of portfolio credit derivatives, which are developed in order
to manage the risk of joint default or the clustering of default. As a default distribution model
for homogeneous (exchangeable) credit portfolio where the assets’ default probabilities and
default correlations are uniform and denoted as p and ρ, Witt has introduced a correlated
binomial model based on the conditional default probabilities pn [7]. Describing the defaulted
(non-defaulted) state of ith asset by Xi = 1 (X = 0) and the joint default probability function
by P(x1, x2, . . . , xN), pn are defined as

pn =
〈
Xn+1

∣∣∣∣∣
n∏

n′=1

Xn′ = 1

〉
. (8)
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Here 〈A|B〉 means the expectation value of a random variable A under the condition that B
is satisfied. The expectation value of Xi signifies the default probability and the condition∏n

n′=1 Xn′ = 1 corresponds to the situation where the first n assets among N are defaulted.
p0 = p and from the homogeneity (exchangeability) assumption, any n assets among N can
be chosen in the n default condition

∏n
n′=1 Xn′ = 1. Xn+1 in equation (8) is also substituted

by anyone which is not used in the n default condition.
In order to fix the joint default probability function completely, it is necessary to impose

N conditions on them from the homogeneity assumption. Witt and the authors have imposed
the following condition on the conditional correlations [7, 8]:

Corr

(
Xn+1, Xn+2

∣∣∣∣∣
n∏

n′=1

Xn′ = 1

)
= ρ exp(−λn) ≡ ρn.

Here Corr(A,B|C) means that the correlation between the random variables A and B under
the condition C is satisfied. From them, recursive relations for pn are obtained and pn are
calculated as

pn = 1 − (1 − p)

n−1∏
n′=0

(1 − ρn′).

The joint default probability function and the default distribution function PN(n) have been
expressed with these pn explicitly. However, the expression has many ± contributions and
it is not an easy task to evaluate them for N � 100. In addition, the range of parameters
p and ρ are also restricted and one cannot study the large correlation regime. Furthermore,
for p = 0.5 case, the distribution does not have the Z2 symmetry as PN(n) = PN(N − n).
The distribution has irregular shape and for some choice of parameters, it shows singular
rippling.

In this paper, we propose a general method to construct correlated binomial models
(CBM) based on the consistent conditions on the conditional probabilities and the conditional
correlations. With the method, it is possible to study the correlation structure for any
probability distribution function for exchangeable correlated Bernoulli random variables. The
organization of the paper is as follows. In section 2, we introduce conditional probabilities
pij and conditional correlations ρij and show how to construct CBMs. We prove that the
construction is self-consistent. In addition, in order to assure the probability conservation
or the normalization, the conditional correlations and the probabilities should satisfy self-
consistent relations. We also calculate the moments 〈nk〉 of the model. In the course, we
introduce a linear operator H which gives the joint probabilities in the ‘binomial’ expansion
of (p + q)N . Section 3 is devoted to some solutions of the self-consistent relations. We obtain
the beta-binomial distribution (BBD) with strong symmetric assumptions on the conditional
correlations. For other probability distribution functions which include the Witt’s model and
the distributions constructed by the superposition of the binomial distributions (Bernoulli
mixture model), we calculate pij and ρij . We study the probability distribution functions for
these solutions from the viewpoint of their correlation structures ρij . We conclude with some
remarks and future problems in section 4.

2. Correlated binomial models and their constructions

In this section, we construct the joint probabilities and the distribution functions of CBMs.
We introduce the following definitions. The first one is the products of Xi and 1 − Xj and
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Figure 1. Pascal’s triangle like representation of Xij and pij , qij up to i+j � 2. X00 = 〈1〉, X10 =
〈X1〉 = p,X01 = 〈1 − X1〉 = 1 − p = q etc.

they include all observables of the model:

�ij =
i∏

i ′=1

Xi ′

i+j∏
j ′=i+1

(1 − Xj ′). (9)

The following definitions are their unconditional and conditional expectation values (see
figure 1):

Xij = 〈�ij 〉 (10)

pij = 〈Xi+j+1|�ij = 1〉 = Xi+1j

Xij

(11)

qij = 〈1 − Xi+j+1|�ij = 1〉 = Xij+1

Xij

. (12)

X00 = 1, X10 = p and X01 = 1 − p = q. Furthermore, the relation pij + qij = 1 should hold
for any i, j , because of the identity 〈1|�ij = 1〉 = 〈Xi+j+1 + (1 − Xi+j+1)|�ij = 1〉 = 1. All
informations are contained in Xij . The joint probability P(x1, x2, . . . , xN) with

∑N
i ′=1 xi ′ = n

is given by XnN−n and the distribution function PN(n) is also calculated as

PN(n) = NCn · XnN−n. (13)

In order to estimate Xij , we need to calculate the products of pkl and qkl from (0, 0) to (i, j).
As the path, we can choose anyone and the product must not depend on the choice. This
property is guaranteed by the next condition on pij and qij as (see figure 2)

qi+1j · pij = pij+1 · qij = Xi+1j+1

Xij

. (14)

In order for pij and qij to satisfy these conditions, we introduce the following conditional
correlations:

Corr(Xi+j+1, Xi+j+2|�ij = 1) = ρij . (15)

We set ρ00 = ρ. (1 − Xi+j+1) and (1 − Xi+j+2) are also correlated with the same strength and
the following relations hold.

Corr((1 − Xi+j+1), (1 − Xi+j+2)|�ij = 1) = ρij . (16)

From these relations, we obtain the recursive relations for pij and qij as

pi+1j = pij + (1 − pij )ρij

qij+1 = qij + (1 − qij )ρij .
(17)
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Figure 3. Picture for the pij + qij = 1 condition.

If we assume the identity pij + qij = 1, we obtain qij = 1 − pij , qi+1j = 1 − pi+1j =
(1 − pij )(1 − ρij ) and pij+1 = 1 − qij+1 = pij (1 − ρij ). Then qi+1j · pij = pij+1 · qij =
pij (1−pij )(1−ρij ) holds and we see that the above consistency relation (14) does hold.

The remaining consistency relations or the probability conservation identity is pij + qij =
1. We prove the identity by the inductive method (see figure 3). For i = j = 0, the identity
holds trivially as p00 + q00 = p + q = 1. For j = 0 or i = 0, qi0 and p0j are calculated
as qi0 = 1 − pi0 and p0j = 1 − q0j and the identity also holds trivially. Then we assume
pij−1 + qij−1 = 1 and prove the identity pij + qij = 1. From the recursive equations (17) on
pij and qij , we have the following relations.

1 = pij + qij = pi−1j + (1 − pi−1j )ρi−1j + (1 − pij−1) + pij−1ρij−1. (18)

For the identity to be satisfied, the conditional correlation ρij−1 and ρi−1j must satisfy the
following relations.

pi−1j − pij−1 = −(1 − pi−1j )ρi−1j − pij−1ρij−1. (19)
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If the conditional correlations ρij are fixed so as to satisfy the relations, the model becomes
self-consistent. In other words, it guarantees the normalization of the resulting probability
distribution.

We estimate the moments of CBM. For the purpose, we introduce following operators
H and Dk . The former one is a linear operator H which maps polynomial in p, q to joint
probabilities ∈ R. By its linearity, we only need to fix its action on monomial piqj as

H [piqj ] = p00p10 · · ·pi−10qi0qi1 · · · qij−1. (20)

The joint probability XnN−n is expressed as XnN−n = H [pnqN−n]. Here we choose the far
left path from (0, 0) to (n,N − n) on the Pascal’s triangle (see figure 1). The action of H on
the binomial expansion (p + q)N = 1N can be interpreted as the probability distribution and
its normalization condition:

1 = H [1N ] = H [(p + q)N ] =
N∑

n=0

NCn · H [pnqN−n] =
N∑

n=0

NCn · XnN−n. (21)

In order to calculate the moments of CBM, it is necessary to put nk in the above summation.
Instead, we will put n(n − 1)(n − 2) · · · (n − k + 1) and introduce the following differential
operators Dk:

Dk =
i1 �=i2,i1 �=i3,...,ik−1 �=ik∑

0�i1,i2,...�N−1

pi10pi20 · · · pik0
∂k

∂pi10∂pi20 · · · ∂pik0
. (22)

The action of Dk on XnN−n for n � k is

DkXnN−n = n(n − 1)(n − 2) · · · (n − k + 1)XnN−n. (23)

On the other hand, the same expression can be obtained as

H

[
pk dk

dpk
pnqN−n

]
= H [n(n − 1)(n − 2) · · · (n − k + 1)pnqN−n]

= n(n − 1)(n − 2) · · · (n − k + 1)XnN−n. (24)

This relation defines the action of Dk on the operator H with any polynomial f (p, q) as

DkH [f (p, q)] = H

[
pk dk

dpk
f (p, q)

]
. (25)

The calculation of the expectation value of n(n − 1) · · · (n − k + 1) is performed by the action
of operator Dk on the binomial expansion of H [1N ] = H [(p + q)N ]:

DkH [(p + q)N ] =
N∑

n=0

NCn · DkXnN−n. (26)

The right-hand side is nothing but the expectation value 〈n(n− 1)(n− 2) · · · (n− k + 1)〉. The
left-hand side is calculated by using equation (25) as

DkH [(p + q)N ] = H

[
pk dk

dpk
(p + q)N

]
= N(N − 1)(N − 2) · · · (N − k + 1)H [pk(p + q)N−k]

= N(N − 1)(N − 2) · · · (N − k + 1)H [pk]

= N(N − 1)(N − 2) · · · (N − k + 1)p00p10p20 · · ·pk−10. (27)
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We obtain the relation

〈n(n − 1)(n − 2) · · · (n − k + 1)〉 = N(N − 1)(N − 2) · · · (N − k + 1)p00p10p20 · · · pk−10.

(28)

From the relation, we can estimate the moments of CBM.

3. Beta-binomial distribution and other solutions

In the previous section, we have derived self-consistent equations for pij and ρij . They are
summarized as

pi+1j = pij + (1 − pij )ρij (29)

pij+1 = pij − pijρij (30)

pi−1j − pij−1 = −(1 − pi−1j )ρi−1j − pij−1ρij−1. (31)

In this section, we show several solutions to these equation. We note, if one knows joint
probabilities Xij , from the definitions for pij and qij , we can estimate pij . Then ρij are
estimated from the recursive equation (29). In addition, we interpret the behaviours of the
solutions from the viewpoint of correlation structures.

3.1. Beta-binomial distribution

In order to solve the above relations on ρij and pij , we use the symmetry viewpoint. For p = 1
2

case, the model should have particle–hole duality between X and 1−X or Z2 symmetry. Then
ρij = ρji should hold. We put stronger assumption that for any p, the system has the Z2

symmetry and ρij depends on i, j only through the combination n = i + j . With a suitable
choice of indexes i → i + 1 and j = n − i, equation (31) reduces to

pin−i − pi+1n−i−1 = ρn(−1 + pin−i − pi+1n−i−1). (32)

From this relation, we see that pij with the same n = i + j consist an arithmetic sequence with
the common difference 	n.

pi+1n−i−1 − pin−i = 	n. (33)

	n satisfy the following equation:

	n = ρn(1 + 	n). (34)

ρn can be solved with 	n as

ρn = 	n

1 + 	n

. (35)

From relation (29) for pij , we obtain the following recursive relation for ρn as,

ρn = 	n

1 + 	n

= 	n−1(1 − ρn−1)

1 + 	n−1(1 − ρn−1)
= ρn−1

1 + ρn−1
. (36)

The explicit form for ρn and 	n are

ρn = ρ

1 + nρ
and 	n = ρn−1. (37)
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Then pij and qij can be obtained explicitly and the results are

pij = pi+j0 − j	i+j = p(1 − ρ) + iρ

1 + (i + j − 1)ρ
(38)

qij = 1 − pij = q(1 − ρ) + jρ

1 + (i + j − 1)ρ
. (39)

XnN−n are then obtained by taking the products of these conditional probabilities from (0, 0)

to (n,N − n),

XnN−n =
n−1∏
i=0

pi0

N−n−1∏
j=0

qnj . (40)

Putting the above results for pij and qij into them, we obtain

XnN−n =
∏n−1

i=0 (p(1 − ρ) + iρ)
∏N−n−1

j=0 (q(1 − ρ) + jρ)∏N−1
k=0 (1 + (k − 1)ρ)

. (41)

Here q = 1 − p. By multiplying the binomial coefficients NCn, we obtain the distribution
function PN(n) as

PN(n) = NCn · XnN−n. (42)

This distribution is nothing but the beta-binomial distribution function (see equation (3)) with
suitable replacements (p, ρ) ↔ (α, β).

3.2. Moody’s correlated binomial model

In the original work by Witt, he assumed ρi,0 = ρ for all i [7]. We call this model as Moody’s
correlated binomial (MCB) model. The above consistent equations are difficult to solve and
the available analytic expressions are those for pi0 as pi0 = 1 − (1 − p)(1 − ρ)i . With the
result, we only have a formal expression for Xij as

Xij = 〈�ij 〉 =
〈

i∏
i ′=1

Xi ′

i+j∏
j ′=i+1

(1 − Xj ′)

〉

=
j∑

k=0

(−1)kjCk

〈
i+k∏
i ′=1

Xi ′

〉
=

j∑
k=0

(−1)kjCk · pi+k0. (43)

With this expression, it is possible to estimate pij , qij and ρij from their definitions. However,
equation (43) contains jCk(−1)k and as N becomes large, it becomes difficult to estimate
them. With the above choice for ρi0 = ρ, it is possible to set N = 30. If ρi0 damps as
exp(−λi) with some positive λ, we can set at most N = 100 for small values of ρ and p.

3.3. Mixed binomial models: Bernoulli mixture models

Bernoulli mixture model with some mixing probability distribution function f (p), the
expression for the joint probability function Xij , is calculated with

Xij = 〈�ij 〉 =
∫ 1

0
dp f (p)pi(1 − p)j . (44)

If we use the beta distribution for f (p), we obtain equation (41). However, this does not mean
that it is trivial to solve the consistent equations with the assumption ρij = ρi+j and obtain the
BBD. The consistent equations completely determine any correlated binomial distribution for
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exchangeable Bernoulli random variables. Every correlated binomial distribution obeys the
relations. With the assumption ρij = ρi+j , we are automatically led to the BBD. That is, the
probability distribution with the symmetry ρij = ρi+j , we prove that it is the BBD. No other
probability distribution has the symmetry.

Here we consider the relation between CBM and Bernoulli mixture model. According
to De Finetti’s theorem, the probability distribution of any infinite exchangeable Bernoulli
random variables can be expressed by a mixture of the binomial distribution [10]. CBM in
the N → ∞ limit should be expressed by such a mixture. From equation (44), we have
the relation P(x1 = 1, x2 = 1, . . . , xk = 1) = Xk0 = ∫

f (p)pk dp. Xk0 is expressed as
Xk0 = p00p10 · · · pk−10, we have a correspondence between the moments of f (p) and a CBM.
That is, if one knows pi0 for any i, we know the mixing function f (p) and vice versa. This
correspondence shows the equivalence of CBM and the Bernoulli mixture model in the large
N limit. But CBMs with finite N can describe probability distribution more widely. In the
Bernoulli mixture model, the variance of p is positive and the correlation ρ cannot be taken
negative. In CBM, we can set ρ negative for small system size N. In addition, CBM is useful to
construct the probability distribution and discuss about the correlation structure. Particularly
we can understand the symmetry of the solution. For example, we want to have Z2 symmetry
distributions. In the Bernoulli mixture model, we need to impose on f (p) as∫ 1

0
f (p)(p − 0.5)2k+1 dp = 0, (45)

where k = 1, 2, . . . . On the other hand, in CBM, we only need to seek a solution with
pii = qii = 1

2 . This simple constraint is useful in the construction and in the parameter
calibration of CBMs.

As other mixing functions f (p), we consider the cases which correspond to the long-range
Ising model with some strength of magnitude of correlation ρ > 0. It has some correlation
only in the regime where the probability distribution for the magnetization p(m) has two
peaks at m1,m2 for T < Tc [9]. If the system size N is large enough, the distribution can be
approximated with the superposition of two binomial distributions. If we take N → ∞ for
T < Tc, the system loses its ergodicity and the phase space breaks up into two space with
m > 0 and m < 0 [11] and the correlation disappears. Even if there appears two peaks in
p(m), only one of them represents the real equilibrium state.

The precise values of m1 and m2 depend on the model parameters, we consider the cases
which correspond to p = 0.5 (Z2 symmetric case) and p 
 0. For the Z2 symmetric case,
there is no external field and m1 = −m2 holds. Between the Bernoulli random variable X
and the Ising spin variable S, there exists a mapping X = 1

2 (1 − S). f (p) has two peaks at
p and q = 1 − p with the same height. On the other hand, for T 
 0 and infinitely weak
positive external field case ∼O

(
1
N

)
, p(m) has one tall peak at m1 
 1 and another short peak

at m2 
 −1. In the language of the Bernoulli random variable case, f (p) has a tall peak at
p′ = p′′ 
 0 and a short peak at p′ 
 1. We consider the following mixing functions and call
them two-binomial models.

• f (p′) = 1
2δ(p′ − p) + 1

2δ(p′ − q) with q = 1 − p.
This mixing function corresponds to the long-range Ising model with Z2 symmetry and
ρ > 0. Xij are given as

Xij = 1
2 (piqj + pjqi). (46)

pij and ρij are calculated easily as

pij = pi+1qj + pjqi+1

piqj + pjqi
(47)
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ρij = pi+j qi+j (p − q)2

pi+j qi+j (p2 + q2) + qp(p2iq2j + q2ip2j )
. (48)

This solution has the Z2 symmetry ρij = ρji .

• f (p′) = pk

pk+qk δ(p
′ − p) + qk

pk+qk δ(p
′ − q) with q = 1 − p.

This is the modified version of the above solution with a parameter k = 0, 1, . . . . If we
set k = 0, it is nothing but the above solution. Xij are given as

Xij = 1

pk + qk
(piqjpk + pjqiqk). (49)

pij and ρij are

pij = pi+k+1qj + pjqi+k+1

pi+kqj + pjqi+k
(50)

ρij = pi+j+kqi+j+k(p − q)2

pi+j+kqi+j+k(p2 + q2) + qp(p2i+2kq2j + q2i+2kp2j )
. (51)

If we denote C1 = pk

pk+qk , C2 = qk

pk+qk , then the mixing function becomes f (p′) =
C1δ(p

′ −p)+C2δ(p
′ −q). This solution may look trivial. One obtain this solution using

the parallel shift of the above solution (46). We replace Xij with Xi+kj in equation (46)
and obtain the solution. Such a parallel shift may give birth to another solution, we would
like to note it here.

• f (p′) = (1 − α)δ(p′ − p′′) + αδ(p′ − 1).
This mixing function corresponds to the long-range Ising model without Z2 symmetry,
〈Si〉 
 1 and ρ > 0. We call the model as Binomial plus (B+) model, because it is a
binomial distribution plus one small peak at n = N . Between p, ρ and p′′, α, we have
the relations

p = α + (1 − α)p′′ and ρ = α(1 − p′′)
α + (1 − α)p′′ (52)

and

α = ρp

1 − p + ρp
. (53)

Xij are given as

Xij = (1 − α)p′′i (1 − p′′)j + αδj,0. (54)

pij and ρij are calculated easily as

pi0 = α + (1 − α)p′′i+1

α + (1 − α)p′′i and pij = p′′ for j �= 0 (55)

and

ρi0 = α(1 − p′′)
α + (1 − α)p′′i+1

and ρij = 0 for j �= 0. (56)

3.4. Correlation structures of the solutions

In this subsection, we study the relations between probability distributions and correlation
structure. Figure 4 shows the probability distribution profiles for three correlated models,
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Figure 4. Probability distribution P30(n) for p = 0.5, ρ = 0.3 and N = 30. We show 3
distributions, MCB (solid line), beta-binomial (dotted line) and two-binomial (thin dotted line).
We also show a binomial distribution (ρ = 0.0) for comparison.

MCB, BBD and two-binomial models. We set p = 0.5, ρ = 0.3 and N = 30. We also shows
the pure binomial distribution for comparison. The former three curves have the same p and
ρ, however their profiles are drastically different. Two-binomial model with Z2 symmetry has
two peaks and their overlap decreases as N increases. At the thermodynamic limit N → ∞,
the overlap disappears and the system loses its ergodicity. The long-range Ising models shows
spontaneous symmetry (SSB) breaking of the Z2 symmetry. On the other hand, the BBD’s
profile is broad and even if we set N → ∞, we obtain the beta distribution and the shape
is almost unchanged. That is, the BBD system does not show SSB and it maintains its Z2

(particle–hole) symmetry at p = 0.5.
The profile of MCB model is peculiar. It is not symmetric and shows singular rippling.

The origin for the rippling can be understood from the inspection of its correlation structure.
Figure 5 shows the correlation structures for the above three models. The parameters are equal
and we show ρi30−i . In contrast to the BBD’s correlation, which is constant with i + j fixed,
the correlations for MCB have a sharp peak at i = 30 and show strong rippling structure. The
curve is not symmetric and the distortion is reflected in the shape of its probability distribution.
On the other hand, the correlation curve for two-binomial distribution has a strong peak at
i = N

2 and it is much different from the BBD’s correlation curve. This strong peak and rapid
decay may be reflected in the decomposition of the probability distribution. However, we have
not yet understood the relation well.

Figure 6 shows the probability distribution for MCB, BBD and B+ models. We set
p = 0.1, ρ = 0.3 and N = 30. We also show the pure binomial distribution for comparison.
MCB and BBD have almost the same bulk shape; however, MCB has a small peak at n = 30.
B+ has more strong peak at n = 30 and its bulk shape can be obtained by a small left shift
of the pure binomial distribution p = 0.1. These profile differences are reflected in their
correlation structures (see figure 7). It shows the correlation structures for the above three
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Figure 5. Correlation ρi30−i for MCB (solid line), BBD (thin dotted line) and two-binomial (dotted
line) models. We set ρ = 0.3 and p = 0.5 as in the previous figure.
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Figure 6. Probability distribution P30(n) for p = 0.1, ρ = 0.3 and N = 30. We show three
distributions, MCB (solid line), beta-binomial (dotted line) and B+ (thin dotted line). We also
show a binomial distribution (ρ = 0.0) for comparison.

models. The parameters are equal as in the previous figure. Contrary to the constant BBD
structure, MCB and B+ models have a peak at i = 30. MCB has a small and B+ has a tall
peak and the difference is reflected in the size of their tall peak of the probability distributions.
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4. Concluding remarks and future problems

In this paper, we show a general method to construct correlated binomial models. We also
estimate their moments. Our method includes Witt’s model and the BBD. In addition, with the
consistent equations on pij and ρij , it is possible to prepare correlated binomial distributions
with any choice for ρi0 or pi0. Of course, the resulting distribution function should be non-
negative, ‘any’ should be taken with some care. In addition, from the joint probabilities Xij ,
it is possible to estimate pij and ρij . We can see the detailed structure of the system with
any distribution function. In the work [4], the conditional strange failure probabilities pi0

were studied. Some recursive relations on pi0 were proposed and the resulting conditional
probabilities pi0 were compared with real data on server networks. We note that pi0 can
be freely changed and it may be possible to make a good fitting with data. However, if the
correlation structure ρij becomes too complex and it shows oscillation, such a modelling may
be over-fitting.

At last, we make comments about future problems. The first one is to seek another
interesting solution to equations (29)–(31) about ρij and pij . In this paper, we have assumed
strong symmetry in ρij in the derivation of the BBD. For any value of p, we have assumed
Z2 symmetry ρij = ρji . Furthermore, we have assumed stronger constraint that ρij depends
on i, j only through the combination i + j . The consistent relation is then solved easily and
we get the BBD. However, we think that the correlated binomial distribution space is rich
and there may exist other interesting solutions. We discuss some simple solutions which are
superpositions of two binomial distribution. They try to mimic the long-range Ising model
in the large N limit and ρ > 0 [9]. A simple seamless solution for the consistent relations
which corresponds to the long-range Ising model may exist. Taking the continuous limit of
the consistent relations and studying their solution is also an interesting problem. The solution
space may become narrow, however differential equations are more tractable than the recursion
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relations. There should exist the beta distribution and the superposition of delta-functions,
which are the continuous limits of the simple solutions presented here.

The second problem is the generalization of the present method. In this paper, we have
assumed that the Bernoulli random variables are all exchangeable. If one considers to apply
the correlated binomial model to the real world, such an idealization should be relaxed. One
possibility is the inhomogeneity in p and the other is the inhomogeneity in ρ. The first step is
to add one other Bernoulli random variable Y to N exchangeable variable system. This N + 1
system case has been treated in [8], it seems much difficult to introduce the self-consistent
equations in the present context. However, such a generalization may lead us to find new
probability distribution functions, we believe that it deserves for extensive studies.
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